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Abstract Visual Question Answering is a multi-modal

task that aims to measure high-level visual understand-

ing. Contemporary VQA models are restrictive in the

sense that answers are obtained via classification over

a limited vocabulary (in the case of open-ended VQA),

or via classification over a set of multiple-choice-type

answers. In this work, we present a completely gener-

ative formulation where a multi-word answer is gener-

ated for a visual query. To take this a step forward, we

introduce a new task: ViQAR (Visual Question Answer-

ing and Reasoning), wherein a model must generate the

complete answer and a rationale that seeks to justify the

generated answer. We propose an end-to-end architec-

ture to solve this task and describe how to evaluate it.

We show that our model generates strong answers and

rationales through qualitative and quantitative evalua-
tion, as well as through a human Turing Test.

1 Introduction

Visual Question Answering(VQA) (Thomason et al. 2018;

Lu et al. 2019; Storks et al. 2019; Jang et al. 2017; Lei

et al. 2018) is a vision-language task that has seen a

lot of attention in recent years. In general, the VQA

task consists of either open-ended or multiple choice

answers to a question asked about the image. There

are an increasing number of models devoted to obtain-

ing the best possible performance on benchmark VQA
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datasets, which intend to measure visual understanding

based on visual questions. Most existing works perform

VQA by using an attention mechanism and combin-

ing features from two modalities for predicting answers.

However, answers in existing VQA datasets and mod-

els are largely one-word answers (average length 1.1)

which gives existing models the freedom to treat answer

generation as a classification task. For the open-ended

VQA task, the top-K answers are chosen, and models

perform classification over this vocabulary.

However, many questions which require common-

sense reasoning cannot be answered in a single word. A

textual answer for a sufficiently complicated question

may need to be a sentence. For example, a question

of the type ”What will happen....” usually cannot be

answered completely using a single word. Fig 2 shows
examples of such questions where multi-word answers

are required (the answers and rationales in this figure

are generated by our model in this work). Current VQA

systems are not well-suited for questions of this type.

To reduce this gap, more recently, the Visual Common-

sense Reasoning (VCR) task (Zellers et al. 2018; Lu

et al. 2019; Dua et al. 2019; Zheng et al. 2019; Talmor

et al. 2018; Lin et al. 2019a) was proposed, which re-

quires a greater level of visual understanding and an

ability to reason about the world. More interestingly,

the VCR dataset features multi-word answers, with an

average answer length of 7.55. However, VCR is still a

classification task, where the correct answer is chosen

from a set of four answers. Models which solve classifi-

cation tasks simply need to pick an answer in the case

of VQA, or an answer and a rationale for VCR. How-

ever, when multi-word answers are required for a visual

question, options are not sufficient, since the same ’cor-

rect’ answer can be paraphrased in a multitude of ways,

each having the same semantic meaning but differing in
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Fig. 1 An example from the VCR dataset (Zellers et al. 2018) shows that there can be many correct multi-word answers
to a question, which makes classification setting restrictive. The highlighted option is the correct option present in the VCR
dataset, the rest are examples of plausible correct answers.

grammar. Fig 1 shows an image from the VCR dataset,

where the first highlighted answer is the correct one

among a set of four options provided in the dataset.

The remaining three answers in the figure are included

by us here (not in the dataset) as other plausible cor-

rect answers. Existing VQA models are fundamentally

limited by picking a right option, rather to answer in

a more natural manner. Moreover, since the number

of possible ‘correct’ options in multi-word answer set-

tings can be large (as evidenced by Fig 1), we propose

that for richer answers, one would need to move away

from the traditional classification setting, and instead

let our model generate the answer to a given question.

We hence propose a new task which takes a generative

approach to multi-word VQA in this work.

Humans when answering questions often use a ra-

tionale to justify the answer. In certain cases, humans

answer directly from memory (perhaps through asso-

ciations) and then provide a post-hoc rationale, which

could help improve the answer too - thus suggesting an

interplay between an answer and its rationale. Follow-
ing this cue, we also propose to generate a rationale

along with the answer which serves two purposes: (i)

it helps justify the generated answer to end-users; and

(ii) it helps generate a better answer. Going beyond

contemporary efforts in VQA, we hence propose, for the

first time to the best of our knowledge, an approach that

automatically generates both multi-word answers and

an accompanying rationale, that also serves as a textual

justification for the answer. We term this task Visual

Question Answering and Reasoning(ViQAR), and pro-

pose an end-to-end methodology to address this task.

In addition to formalizing this new task, we pro-

vide a simple yet reasonably effective model consisting

of four sequentially arranged recurrent networks to ad-

dress this challenge. The model can be seen as having

two parts: a generation module (GM), which comprises

of the first two sequential recurrent networks, and a

refinement module (RM), which comprises of the final

two sequential recurrent networks. The GM first gen-

erates an answer, using which it generates a rationale

that explains the answer. The RM generates a refined

answer based on the rationale generated by GM. The

refined answer is further used to generate a refined ra-

tionale. Our overall model design is motivated by the

way humans think about answers to questions, wherein

the answer and rationale are often mutually dependent

on each other (one could motivate the other, and also

refine the other). We seek to model this dependency by

first generating an answer-rationale pair, and then us-

ing them as priors to regenerate a refined answer and

rationale. We train our model on the VCR dataset,

which contains open-ended visual questions along with

answers and rationales. Considering this is a genera-

tive task, we evaluate our methodology by comparing

our generated answer/rationale with the ground truth

answer/rationale on correctness and goodness of the

generated content using generative language metrics,

as well as by human Turing Tests.

Our main contributions in this work can be sum-

marized as follows: (i) We propose a new task ViQAR

that seeks to open up a new dimension of Visual Ques-

tion Answering tasks, by moving to a completely gen-

erative paradigm; (ii) We propose a simple and effec-

tive model based on generation and iterative refinement

for ViQAR(which could serve as a baseline to the com-

munity); (iii) Considering generative models in general

can be difficult to evaluate, we provide a discussion on

how to evaluate such models, as well as study a com-

prehensive list of evaluation metrics for this task; (iv)

We conduct a suite of experiments which show promise

of the proposed model for this task, and also perform

ablation studies of various choices and components to

study the effectiveness of the proposed methodology on

ViQAR. We believe that this work could lead to further

efforts on common-sense answer and rationale genera-

tion in vision tasks in the near future. To the best of

our knowledge, this is the first such effort of automati-

cally generating a multi-word answer and rationale to a

visual question, instead of picking answers from a pre-

defined list.
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Question:  What is person8 doing right 

now?
Generated answer:  person8 is giving 

a speech

Generated reason: person8 is 

standing in front of a microphone

Why this 
answer?

person 8

Question:  Why is person1 covering his 

face ?
Generated answer: he is trying to 

avoid getting burned

Generated reason: there is a fire 

right in front of him

Why this 
answer?

person1

Question:  Why is person2 wearing 

tie1?
Generated answer: person2 is 

wearing a tie because he is at a 

wedding

Generated reason: people wear 

ties to formal events

Why this 
answer?

person2

   tie1

Fig. 2 Given an image and a question about the image, we generate a natural language answer and reason that explains
why the answer was generated. The images shown above are examples of outputs that our proposed model generates. These
examples also illustrate the kind of visual questions for which a single-word answer is insufficient. Contemporary VQA models
handle even such kinds of questions only in a classification setting, which is limiting.

2 Related Work

In this section, we review earlier efforts from multiple

perspectives that may be related to this work: Visual

Question Answering, Visual Commonsense Reasoning

and Image Captioning in general.

Visual Question Answering (VQA): VQA (Antol

et al. 2015; Goyal et al. 2016; Jabri et al. 2016; Selvaraju

et al. 2020) refers to the task of answering questions re-

lated to an image. VQA and its variants have been the

subject of much research work recently. A lot of recent

work has focused on varieties of attention-based mod-

els, which aim to ’look’ at the relevant regions of the

image in order to answer the question (Anderson et al.

2017; Lu et al. 2016b; Yu et al. 2017a; Xu and Saenko

2015; Yi et al. 2018; Xu and Saenko 2015; Shih et al.

2015; Chen et al. 2015; Yang et al. 2015). Other recent

work has focused on better multimodal fusion meth-

ods (Kim et al. 2018; 2016; Fukui et al. 2016; Yu et al.

2017b), the incorporation of relations (Norcliffe-Brown

et al. 2018; Li et al. 2019; Santoro et al. 2017), the use

of multi-step reasoning (Cadène et al. 2019; Gan et al.

2019; Hudson and Manning 2018), and neural module

networks for compositional reasoning (Andreas et al.

2016; Johnson et al. 2017; Chen et al. 2019; Hu et al.

2017). Visual Dialog (Das et al. 2018; Zheng et al. 2019)

extends VQA but requires an agent to hold a meaning-

ful conversation with humans in natural language based

on visual questions.

The efforts closest to ours are those that provide

justifications along with answers (Li et al. 2018b; Hen-

dricks et al. 2016; Li et al. 2018a; Park et al. 2018;

Wu et al. 2019b; Park et al. 2018; Rajani and Mooney

2017), each of which however also answers a question as

a classification task (and not in a generative manner)

as described below. (Li et al. 2018b) create the VQA-E

dataset that has an explanation along with the answer

to the question. (Wu et al. 2019b) provide relevant cap-

tions to aid in solving VQA, which can be thought of

as weak justifications. More recent efforts (Park et al.

2018; Patro et al. 2020) attempt to provide visual and

textual explanations to justify the predicted answers.

Datasets have also been proposed for VQA in the re-

cent past to test visual understanding (Zhu et al. 2015;

Goyal et al. 2016; Johnson et al. 2016); for e.g., the

Visual7W dataset (Zhu et al. 2015) contains a richer

class of questions about an image with textual and vi-

sual answers. However, all these aforementioned efforts

continue to focus on answering a question as a classifica-

tion task (often in one word, such as Yes/No), followed

by simple explanations. We however, in this work, focus

on generating multi-word answers with a corresponding

multi-word rationale, which has not been done before.

Visual Commonsense Reasoning (VCR): VCR

(Zellers et al. 2018) is a recently introduced vision-

language dataset which involves choosing a correct an-

swer (among four provided options) for a given ques-

tion about the image, and then choosing a rationale

(among four provided options) that justifies the an-

swer. The task associated with the dataset aims to test

for visual commonsense understanding and provides im-

ages, questions and answers of a higher complexity than

other datasets such as CLEVR (Johnson et al. 2016).

The dataset has attracted a few methods over the last

year (Zellers et al. 2018; Lu et al. 2019; Dua et al. 2019;

Zheng et al. 2019; Talmor et al. 2018; Lin et al. 2019a;b;

Wu et al. 2019a; Ayyubi et al. 2019; Brad 2019; Yu

et al. 2019; Wu et al. 2019a), each of which however

follow the dataset’s task and treat this as a classifica-

tion problem. None of these efforts attempt to answer

and reason using generated sentences.
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Image Captioning and Visual Dialog: One could

also consider the task of image captioning (Xu et al.

2015; You et al. 2016; Lu et al. 2016a; Anderson et al.

2017; Rennie et al. 2016), where natural language cap-

tions are generated to describe an image, as being close

to our objective. However, image captioning is more a

global description of an image than question-answering

problems that may be tasked with answering a question

about understanding of a local region in the image.

In contrast to all the aforementioned efforts, our

work, ViQAR, focuses on automatic complete generation

of the answer, and of a rationale, given a visual query.

This is a challenging task, since the generated answers

must be correct (with respect to the question asked),

be complete, be natural, and also be justified with a

well-formed rationale. We now describe the task, and

our methodology for addressing this task.

3 ViQAR: Task Description

Let V be a given vocabulary of size |V| and A = (a1, a2,

...ala) ∈ V la , R = (r1, r2, ...rlr ) ∈ V lr represent answer

sequences of length la and rationale sequences of length

lr respectively. Let I ∈ RD represent the image repre-

sentation, and Q ∈ RB be the feature representation of

a given question. We also allow the use of an image cap-

tion, if available, in this framework given by a feature

representation C ∈ RB . Our task is to compute a func-

tion F : RD×RB×RB → V la×V lr that maps the input

image, question and caption features to a large space of

generated answers A and rationales R, as given below:

F(I,Q,C) = (A,R) (1)
Note that the formalization of this task is different from

other tasks in this domain, such as Visual Question An-

swering (Agrawal et al. 2015) and Visual Commonsense

Reasoning (Zellers et al. 2018). The VQA task can be

formulated as learning a function G : RD × RB → C,

where C is a discrete, finite set of choices (classification

setting). Similarly, the Visual Commonsense Reason-

ing task provided in (Zellers et al. 2018) aims to learn a

function H : RD×RB → C1×C2, where C1 is the set of

possible answers, and C2 is the set of possible reasons.

The generative task, proposed here in ViQAR, is harder

to solve when compared to VQA and VCR. One can

divide ViQAR into two sub-tasks:

– Answer Generation: Given an image, its caption,

and a complex question about the image, a multi-

word natural language answer is generated:

(I,Q,C)→ A

– Rationale Generation: Given an image, its cap-

tion, a complex question about the image, and an

answer to the question, a rationale to justify the

answer is generated: (I,Q,C,A)→ R

We also study variants of the above sub-tasks (such as

when captions are not available) in our experiments.

Our experiments suggest that the availability of cap-

tions helps performance for the proposed task, expect-

edly. We now present a methodology built using known

basic components to study and show that the proposed,

seemingly challenging, new task can be solved with ex-

isting architectures. In particular, our methodology is

based on the understanding that the answer and ra-

tionale can help each other, and hence needs an itera-

tive refinement procedure to handle such a multi-word

multi-output task. We consider the simplicity of the

proposed solution as an aspect of our solution by design,

more than a limitation, and hope that the proposed ar-

chitecture will serve as a baseline for future efforts on

this task.

4 Proposed Methodology

We present an end-to-end, attention-based, encoder-

decoder architecture for answer and rationale genera-

tion which is based on an iterative refinement proce-

dure. The refinement in our architecture is motivated

by the observation that answers and rationales can in-

fluence one another mutually. Thus, knowing the an-

swer helps in generation of a rationale, which in turn

can help in the generation of a more refined answer. The

encoder part of the architecture generates the features

from the image, question and caption. These features

are used by the decoder to generate the answer and

rationale for a question.

Feature Extraction: We use spatial image features as

proposed in (Anderson et al. 2017), which are termed

bottom-up image features. We consider a fixed number

of regions for each image, and extract a set of k features,

V , as defined below:

V = {v1,v2, ...,vk} where vi ∈ RD (2)

We use BERT (Devlin et al. 2019) representations to

obtain fixed-size (B) embeddings for the question and

caption, Q ∈ RB and C ∈ RB respectively. The ques-

tion and caption are projected into a common feature

space T ∈ RL given by:

T = g(WT
t (tanh(WT

q Q)⊕ tanh(WT
c C))) (3)

where g is a non-linear function, ⊕ indicates concate-

nation and Wt ∈ RL×L, Wq ∈ RB×L and Wc ∈ RB×L
are learnable weight matrices of the layers (we use two

linear layers in our implementation in this work).

Let the mean of the extracted spatial image fea-

tures (as in Eqn 2) be denoted by V̄ ∈ RD. These are

concatenated with the projected question and caption

features to obtain F:
F = V̄ ⊕T (4)

We use F as the common input feature vector to all the

LSTMs in our architecture.
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Fig. 3 The decoder of our proposed architecture: Given an image and a question on the image, the model must generate an
answer to the question and a rationale to justify why the answer is correct.

Architecture: Fig. 3 shows our end-to-end architec-

ture to address ViQAR. As stated earlier, our architec-

ture has two modules: generation (GM) and refinement

(RM). TheGM consists of two sequential, stacked LSTMs,

henceforth referred to as answer generator (AG) and ra-

tionale generator (RG) respectively. The RM seeks to

refine the generated answer as well as rationale, and is

an important part of the proposed solution as seen in

our experimental results. It also consists of two sequen-

tial, stacked LSTMs, which we denote as answer refiner

(AR) and rationale refiner (RR).

Each sub-module (presented inside dashed lines in

the figure) is a complete LSTM. Given an image, ques-

tion, and caption, the AG sub-module unrolls for la
time steps to generate an answer. The hidden state of

Language and Attention LSTMs after la time steps is a

representation of the generated answer. Using the rep-

resentation of the generated answer from AG, RG sub-

module unrolls for lr time steps to generate a rationale

and obtain its representation. Then the AR sub-module

uses the features from RG to generate a refined answer.

Lastly, the RR sub-module uses the answer features

from AR to generate a refined rationale. Thus, a re-

fined answer is generated after la + lr time steps and a

refined rationale is generated after la further time steps.

The complete architecture runs in 2la + 2lr time steps.

The LSTMs: The two layers of each stacked LSTM

(Hochreiter and Schmidhuber 1997) are referred to as

the Attention-LSTM (La) and Language-LSTM (Ll)
respectively. We denote hat and xat as the hidden state

and input of the Attention-LSTM at time step t respec-

tively. Analogously, hlt and xlt denote the hidden state

and input of the Language-LSTM at time t. Since the

four LSTMs are identical in operation, we describe the

attention and sequence generation modules of one of

the sequential LSTMs below in detail.

Spatial Visual Attention: We use a soft, spatial-

attention model, similar to (Anderson et al. 2017) and

(Lu et al. 2016a), to compute attended image features

V̂. Given the combined input features F and previous

hidden states hat−1, hlt−1, the current hidden state of

the Attention-LSTM is given by:
xat ≡ hp ⊕ hlt−1 ⊕ F⊕ πt (5)

hat = La(xat , h
a
t−1) (6)

where πt = WT
e 1t is the embedding of the input word,

We ∈ R|V|×E is the weight of the embedding layer, and

1t is the one-hot representation of the input at time t.

hp is the hidden representation of the previous LSTM

(answer or rationale, depending on the current LSTM).

The hidden state hat and visual features V are used

by the attention module (implemented as a two-layered

MLP in this work) to compute the normalized set of

attention weights αt = {α1t, α2t, ..., αkt} (where αit is

the normalized weight of image feature vi) as below:

yi,t = WT
ay(tanh(WT

avvi +WT
ahh

a
t )) (7)

αt = softmax(y1t, y23, ..., ykt) (8)

In the above equations, Way ∈ RA×1, Wav ∈ RD×A
and Wah ∈ RH×A are weights learned by the attention

MLP, H is the hidden size of the LSTM and A is the

hidden size of the attention MLP.

The attended image feature vector V̂t =
∑ k

i=1
αitvi is

the weighted sum of all visual features.

Sequence Generation: The attended image features

V̂t, together with T and hat , are inputs to the language-

LSTM at time t. We then have:
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xlt ≡ hp ⊕ V̂t ⊕ hat ⊕T (9)

hlt = Ll(xlt, hlt−1) (10)

yt = WT
lhh

l
t + blh (11)

pt = softmax(yt) (12)

where hp is the hidden state of the previous LSTM, hlt
is the output of the Language-LSTM, pt is the condi-

tional probability over words in V at time t. The word

at time step t is generated by a single-layered MLP with

learnable parameters: Wlh ∈ RH×|V|, blh ∈ R|V|×1. The

attention MLP parameters Way, Wav and Wah, and em-

bedding layer’s parametersWe are shared across all four

LSTMs. (We reiterate that although the architecture is

based on well-known components, the aforementioned

design decisions were obtained after significant study.)

Loss Function: For a better understanding of our ap-

proach, Figure 4 presents a high-level illustration of our

proposed generation-refinement model.

AG RG AR RRF

Fig. 4 High-level illustration of our proposed Generation-
Refinement model

Let A1 = (a11, a12, ..., a1la), R1 = (r11, r12, ..., r1lr ),

A2 = (a21, a22, ..., a2la) and R2 = (r21, r22, ..., r2lr ) be

the generated answer, generated rationale, refined an-

swer and refined rationale sequences respectively, where

aij and rij are discrete random variables taking values

from the common vocabulary V. Given the common

input F , our objective is to maximize the likelihood

P (A1, R1, A2, R2|F ) given by:

P (A1, R1, A2, R2|F ) = P (A1, R1|F )P (A2, R2|F,A1, R1)

= P (A1|F )P (R1|F,A1)

P (A2|F,A1, R1)P (R2|F,A1, R1, A2)

(13)

In our model design, each term in the RHS of Eqn 13 is

computed by a distinct LSTM. Hence, minimizing the

sum of losses of the four LSTMs becomes equivalent to

maximizing the joint likelihood. Our overall loss is the

sum of four cross-entropy losses, one for each LSTM, as

given below:

L = −
( la∑
t=1

log pθ1t +

lr∑
t=1

log pθ2t +

la∑
t=1

log pθ3t +

lr∑
t=1

log pθ4t

)
(14)

where θi represents the ith sub-module LSTM, pt is

the conditional probability of the tth word in the input

sequence as calculated by the corresponding LSTM, la
indicates the ground-truth answer length, and lr the

ground truth rationale length. Other loss formulations,

such as a weighted average of the cross entropy terms

did not perform better than a simple sum. We tried

weights from 0.0, 0.25, 0.5, 0.75, 1.0 for the loss terms.

More implementation details are provided in Section 5.

5 Experiments and Results

In this section, we describe the dataset used for this

work, implementation details, as well as present the re-

sults of the proposed method as well as its variants.

Dataset: Considering this is a new task, there is no

dataset explicitly built for the task. Hence we choose

the closest one, the recently introduced VCR (Zellers

et al. 2018) dataset, which has all the components needed

for our approach. We train our proposed architecture

on VCR, which contains answers and rationales that

allow us to compare our generated answers and ratio-

nales against. We also show in Section 6 on how a model

trained on the VCR dataset can be used to give a ra-

tionale for images from Visual7W (Zhu et al. 2015), an

existing VQA dataset with no ground-truth rationale.

VCR is a large-scale dataset that consists of 290k

triplets of questions, answers, and rationales over 110k

unique movie scene images. For our method, we also

use the captions provided by the authors of VCR (we

perform an ablation study without the captions). At

inference, captions are generated using (Vinyals et al.

2014) (trained on provided captions) and use them as

input to our model. Since we do not have access to

the test set, we split the train set into train-train-split

(202,923 samples) and train-val-split (10,000 samples)

while using the validation set as our test data (26,534

samples).

Dataset Avg. A Avg. Q Avg. R Complexity
length length length

VCR 7.55 6.61 16.2 High
VQA-E 1.11 6.1 11.1 Low
VQA-X 1.12 6.13 8.56 Low

Table 1 Statistical comparison of VCR with VQA-E, and
VQA-X dataset. VCR dataset is highly complex as it is made
up of complex subjective questions.

We now describe the reasons for the choice of the

dataset used in this work. VQA-E (Li et al. 2018b)

and VQA-X (Park et al. 2018) are competing datasets

that contains explanations along with question-answer

pairs. Table 1 shows the high-level analysis of the three

datasets. Since VQA-E and VQA-X are derived from

VQA-2, many of the questions can be answered in one

word (a yes/no answer or a number). In contrast, VCR

asks open-ended questions and has longer answers. Since

our task aims to generate rich answers, the VCR dataset
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provides a richer context for this work. CLEVR (John-

son et al. 2016) is another VQA dataset that measures

the logical reasoning capabilities by asking the question

that can be answered when a certain sequential reason-

ing is followed. This dataset however does not contain

reasons on which we can train. Also, we do not perform

a direct evaluation on CLEVR because our model is

trained on real-world natural images while CLEVR is

a synthetic shapes dataset.

We transfer our model to another challenging dataset,

Visual7W (Zhu et al. 2015), by generating an answer/

rationale pair for visual questions in Visual7W (further

details presented in Section 6). Visual7W is a large-

scale visual question answering (VQA) dataset, which

has multi-modal answers i.e visual ’pointing’ answers

and textual ’telling’ answers.

Implementation Details: We use spatial image fea-

tures generated from (Anderson et al. 2017) as our

image input. Fixed-size BERT representations of ques-

tions and captions are used. Hidden size of all LSTMs

is set to 1024 and hidden size of the attention MLP

is set to 512. We trained using the ADAM optimizer

with a decaying learning rate starting from 4e−4, using

a batch size of 64. Dropout is used as a regularizer.

Evaluation Metrics: We use multiple automatic eval-

uation metrics to evaluate the goodness of answers and

rationales generated by our model. Automatic Eval-

uation Metrics: Since our task is generative, evalua-

tion is done by comparing our generated sentences with

ground-truth sentences to assess their semantic correct-

ness as well as structural soundness. To this end, we

use multiple evaluation metrics. Word overlap-based

metrics such as METEOR (Lavie and Agarwal 2007),

CIDEr(Vedantam et al. 2014) and ROUGE(Lin 2004)

quantify the structural closeness of the generated sen-

tences to the ground-truth. Such metrics by themselves

are usually insufficient for evaluating generation tasks,

since there could be many valid generations which are

correct, but share very few words with a single answer

which serves as ground truth. Since the word overlap

metrics do not measure how close the generation is to

the ground-truth in meaning, embedding-based met-

rics (which calculate the cosine similarity between sen-

tence embeddings for generated and ground-truth sen-

tences) such as SkipThought cosine similarity (Kiros

et al. 2015), Vector Extrema cosine similarity (Forgues

and Pineau 2014), Universal sentence encoder (Cer et al.

2018) and Infersent (Conneau et al. 2017), BERTScore

(Zhang et al. 2019) are also considered. Embedding-

based metrics quantify the semantic closeness between

the generated and ground-truth sentences. However,

they do not care about the ordering of words in a sen-

tence, and are prone to give high scores even for gram-

matically incorrect sentences. Thus, a comprehensive

suite of these metrics provide a more holistic evalua-

tion of the generated sentences.

Classification Accuracy: We also evaluate the per-

formance of our model on the classification task. For

every question, there are four answer choices and four

rationale choices. We compute the similarity scores be-

tween each of the options and our generated answer/ ra-

tionale, and choose the option with the highest similar-

ity score. Accuracy percentage for answer classification,

rationale classification and overall answer-rationale clas-

sification are reported in Table 2. Only samples that

correctly predict both answers and rationales are con-

sidered for overall answer-rationale classification accu-

racy.

Results: Qualitative Results: Fig. 5 shows examples of

images and questions where the proposed model gener-

ates a meaningful answer with a supporting rationale.

Qualitative results indicate that our model is capable

of generating answer-rationale pairs to complex sub-

jective questions starting with ’Why’, ’What’, ’How’,

etc. Given the question, ”What is person8 doing right

now?”, the generated rationale: ”person8 is standing in

front of a microphone” shows that the model generates

the answer: ”person8 is giving a speech” because it can

see a microphone and a person. Fig. 6 presents a few

examples from the VCR dataset on which our model

fails to generate a good answer-rationale pair. We ob-

serve that even when an incorrect answer is generated,

the generated rationale is capable of justifying the in-

correct answer, showing that a rationale is simply not

memorized.
Quantitative Results: Quantitative results on the suite

of evaluation metrics are shown in Table 3. Since this

is a new task, there are no existing methods to com-

pare against. So we compare our model against a sim-

pler model that is the first logical attempt to solve

ViQAR, which is a two-stage LSTM that generates the

answer and reason independently and is not trained

end-to-end. This model is termed Baseline in Table 3.

We also compare our results against a second, stronger

baseline(VQA- Baseline) in which we used a VQA model

(Anderson et al. 2017) to extract multi-modal features

to generate answers and rationales independently. Clearly,

our complete algorithm (given in column Q+I+C) gives

improved results on all metrics. We also show results on

variants of the model without the caption, and without

the image. Here again, the availability of all three in-

puts - Q, I and C - provides the best performance. All

the qualitative results in Fig. 5 were obtained using the

(Q+I+C) setting.

Human Turing Test: Owing to the shortcomings of

automatic evaluation metrics as discussed above, and
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Metrics Q+I+C Q+I Q+C
Answer Rationale Overall Answer Rationale Overall Answer Rationale Overall

Infersent 34.90 31.78 11.91 34.73 31.47 11.68 30.50 27.99 9.17
USE 34.56 30.81 11.13 34.7 30.57 11.17 30.15 27.57 8.56

Table 2 Quantitative results for Visual Commonsense Reasoning task on the validation split of the VCR dataset. Accuracy
percentage for answer classification, rationale classification and overall answer-rationale classification is reported.

person2 Question:  What does person2 think of person1?

Answer:  person2 is worried about person1

Reason:  person2 is looking down at person1, and 

person1 is stressed

Answer:  person2 thinks person1 is a strange guy

Reason:  person2 is looking at person1 with a suspicious 

look

person2

person1

Question:  Why is person4 wearing a tie?

Answer:  he is at a business meeting

Reason:  business attire is a suit and tie

Answer:  he is a businessman

Reason:  business men wear suits and ties to work

person4

tie

person1book1

Fig. 5 Qualitative results for ViQAR task from our Generation Refinement architecture. Blue box = question about the image;
Green = Ground truth; Red = Generated results from our proposed architecture. Note: Object regions shown on the image is
for reader’s understanding and are not given as input to the model.

person1

bottle3
bottle1bottle4
bottle2

Question:  Where are person1 person2 person3 going ?

Answer:  person1 person2 person3 are going into the 
library inside a churge .
Reason:  person1 person2 person3 are walking past the 
church ' s stain glass window toward a room filled with 
books .

Answer:  they are walking to their next class
Reason:  they are walking in a hallway of a building

Fig. 6 Challenging examples for which our model fails to generate a good answer and rationale, but the generated rationale
justifies the incorrect answer. Blue box = question about the image; Green = Ground truth; Red = Generated results from
our proposed architecture. Note: Object regions shown on the image are for the reader’s understanding and are not given as
input to the model.

the inherent complexity of the VCR dataset, we per-

form a Turing test on the generated answers and ratio-

nales. 30 human evaluators were presented each with

50 randomly sampled image-question pairs, each con-

taining an answer to the question and its rationale.

The test aims to measure how humans score the gen-

erated sentences w.r.t. ground truth sentences. Sixteen

of the fifty questions have ground truth answers and

rationales, while the rest were generated by our pro-

posed model. For each sample, the evaluators had to

give a rating of 1 to 5 for five different criteria, with

1 being very poor and 5 being very good. The results

are presented in Table 4. Evidently, the answers and

rationales produced by our method were fairly correct

grammatically. The evaluators also deemed that our an-

swers were relevant to the question and the generated

rationales are acceptably relevant to the generated an-

swer. To study transfer to Visual7W, we perform an-

other Turing test, owing to the unavailability of ground-

truth rationales. We note that Visual7W images are not

from the same distribution as the VCR images(which

are primarily movie scenes), and it is expected that

the answer/rationale pair generated for a random im-

age will be poor. However, we observe that our model

can generate good looking answers and rationales for

queries on some images, presumably because the images

in question are close to the source (VCR) distribution.

Such images are few and far between, but we perform

a Turing test on them nonetheless, to show that our

model can generate good answer/rationale pairs for Vi-

sual7W. Thirty human evaluators were presented each

with twenty five hand-picked image-question pairs, each

of which contains a generated answer to the question

and its rationale. The results which are presented in
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Metrics VQA-Baseline Baseline Q+I+C Q+I Q+C
Univ Sent Encoder CS 0.419 0.410 0.455 0.454 0.440
Infersent CS 0.370 0.400 0.438 0.442 0.426
Embedding Avg CS 0.838 0.840 0.846 0.853 0.845
Vector Extrema CS 0.474 0.444 0.493 0.483 0.475
Greedy Matching Score 0.662 0.633 0.672 0.661 0.657
METEOR 0.107 0.095 0.116 0.104 0.103
Skipthought CS 0.430 0.359 0.436 0.387 0.385
RougeL 0.259 0.206 0.262 0.232 0.236
CIDEr 0.364 0.158 0.455 0.310 0.298
F-BERTScore 0.877 0.860 0.879 0.867 0.868

Table 3 Quantitative evaluation of model variants on ViQAR using validation split of VCR dataset. CS stands for cosine
similarity. Baseline and VQA-Baseline are the simpler models we compare against. The remaining columns indicate our
proposed model variants.

Criteria Generated Ground-truth
Mean ±std Mean ±std

How well-formed and grammatically correct is the answer? 4.15 ±1.05 4.40 ±0.87
How well-formed and grammatically correct is the rationale? 3.53 ±1.26 4.26 ±0.92
How relevant is the answer to the image-question pair? 3.60 ±1.32 4.08 ±1.03
How well does the rationale explain the answer with respect to the image-question pair? 3.04 ±1.36 4.05 ±1.10
Irrespective of the image-question pair, how well does the rationale explain the answer ? 3.46 ±1.35 4.13 ±1.09

Table 4 The results of a Turing test performed with 30 people who had to rate samples consisting of a question and its
corresponding answer and rationales on 5 criteria. For each criterion, a rating of 1 to 5 were given. The table gives the mean
score and standard deviation for each criterion for both the generated and ground truth samples.

Criteria Generated
Mean ±std

How well-formed and grammatically correct is the answer? 3.98 ±1.08
How well-formed and grammatically correct is the rationale? 3.80 ±1.04
How relevant is the answer to the image-question pair? 4.11 ±1.17
How well does the rationale explain the answer with respect to the image-question pair? 3.83 ±1.23
Irrespective of the image-question pair, how well does the rationale explain the answer ? 3.83 ±1.28

Table 5 Results of the Turing test on Visual7W dataset performed with 30 people who had to rate samples consisting of a
question and its corresponding answer and rationales on five criteria. For each criterion, a rating of 1 to 5 was given. The table
gives the mean score and standard deviation for each criterion for the generated samples.

Table 5, indicate that, for certain hand-picked samples,

our model is able to generate good looking answers and

rationales. Direct comparison with VQA models is not

relevant in this setting, since we perform a generative

task and focus on multi-word answers.

6 Discussions and Analysis

We study the proposed model under different settings

to understand its efficacy, and present broader thoughts

on automatic evaluation for such tasks.

Ablation Studies on Refinement Module: We eval-

uate the performance of the following variations of our

proposed generation-refinement architectureM : (i)M−
RM : where the refinement module is removed; and (ii)

M +RM : where a second refinement module is added,

i.e. the model has one generation module and two re-

finement modules (to see if further refinement of answer

and rationale helps). Table 6 shows the quantitative re-

sults.

Metrics #Ref Modules
0 1 2

Univ Sent Encoder 0.453 0.455 0.430
Infersent 0.434 0.438 0.421
Embedding Avg Cosine similarity 0.85 0.846 0.840
Vector Extrema Cosine Similarity 0.482 0.493 0.462
Greedy Matching Score 0.659 0.672 0.639
METEOR 0.101 0.116 0.090
Skipthought Cosine Similarity 0.384 0.436 0.375
RougeL 0.234 0.262 0.198
CIDEr 0.314 0.455 0.197
F-BertScore 0.868 0.879 0.861

Table 6 Comparison of proposed Generation-Refinement
Architecture for ViQAR with two Variants: 0 and 2 Refinement
modules.

We observe that our proposed model, which has one

refinement module has the best results. Adding addi-

tional refinement modules causes the performance to

go down. We hypothesize that the additional param-

eters in the model makes it harder for the network to

learn from the given dataset in such a scenario. Removal

of the refinement module also causes performance to

drop, supporting our claim on the usefulness for a re-

finement module that refines the answer and rationale.
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We also studied the classification accuracy in these vari-

ations, and observed that 1-refinement model (original

version of our method) with 11.9% accuracy outper-

forms 0-refinement model (11.64%) and 2-refinement

model (10.94%) for the same reasons. Fig. 7 provides a

few qualitative results with and without the refinement

module, supporting our claim.

Transfer to Other Datasets: We also study whether

the proposed model, trained on the VCR dataset, can

provide answers and rationales to visual questions in

standard VQA datasets (which do not have ground

truth rationale provided). To this end, we tested our

trained model on the Visual7W [53] dataset without

any additional training. Fig 8 presents qualitative re-

sults for ViQAR task on the Visual7W dataset. We also

perform a Turing test on the generated answers and

rationales to evaluate the model’s performance on Vi-

sual7W in Section 5 (see Table 5). We observe that our

algorithm generalizes reasonably well to the other VQA

dataset and generates answers and rationales relevant

to the image-question pair, without any explicit train-

ing for this dataset. This adds a promising dimension

to this work.

Difficulty of evaluation: Since ViQAR is a completely

generative task, automatic evaluation is a challenge, as

in any other generative methods. However, for com-

prehensive evaluation, we suggest that evaluation be

performed over a number of metrics, including those

used in other generative tasks (e.g., Image Captioning).

We use a comprehensive suite of embedding-based and

word-overlapping based metrics in this work. A good

score over the entire set indicates goodness of seman-

tic content as well as correctness of sentence structure.

We also perform a detailed analysis in supplementary

to understand why the evaluation metrics reported here

have low scores even when the results are qualitatively

good. We hope that an increased focus on generation

tasks will only motivate a better metric in the near fu-

ture.

7 Conclusion

In this paper, we propose ViQAR, a novel task for gen-

erating a multi-word answer and a rationale given an

image and a question. Our work aims to go beyond

classical VQA by moving to a completely generative

paradigm. To solve ViQAR, we present an end-to-end

generation-refinement architecture which is based on

the observation that answers and rationales are depen-

dent on one another. We showed the promise of our

model on the VCR dataset both qualitatively and quan-

titatively, and our human Turing test showed results

comparable to the ground truth. We also showed that

this model can be transferred to tasks without ground

truth rationale. We hope that our model can serve as

a baseline for further efforts. We also believe that our

work opens up a broader discussion around generative

answers in VQA and other deep neural network models

in general.
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